Chemistry Steps

Chemistry Steps

stoichiometry problems 2

General Chemistry

Stoichiometry.

This is a comprehensive, end-of-chapter set of practice problems on stoichiometry that covers balancing chemical equations, mole-ratio calculations, limiting reactants, and percent yield concepts. 

The links to the corresponding topics are given below.

Limiting Reactant

Balance the following chemical equations:

a) HCl + O 2 → H 2 O + Cl 2

b) Al(NO 3 ) 3 + NaOH → Al(OH) 3 + NaNO 3

c) H 2 + N 2 → NH 3

d) PCl 5 + H 2 O → H 3 PO 4 + HCl

e) Fe + H 2 SO 4 → Fe 2 (SO 4 ) 3 + H 2

f) CaCl 2 + HNO 3 → Ca(NO 3 ) 2 + HCl

g) KO 2 + H 2 O → KOH + O 2 + H 2 O 2

h) Al + H 2 O → Al 2 O 3 + H 2

i) Fe + Br 2 → FeBr 3

j) Cu + HNO 3 → Cu(NO 3 ) 2 + NO 2 + H 2 O

k) Al(OH) 3 → Al 2 O 3 + H 2 O

l) NH 3 + O 2 → NO + H 2 O

m) Ca(AlO 2 ) 2 + HCl → AlCl 3 + CaCl 2 + H 2 O

n) C 5 H 12 + O 2 → CO 2 + H 2 O

o) P 4 O 10 + H 2 O → H 3 PO 4

p) Na 2 CrO 4 + Pb(NO 3 ) 2 → PbCrO 4 + NaNO 3

q) MgCl 2 + AgNO 3 → AgCl + Mg(NO 3 ) 2

r) KClO 3 → KClO 4 + KCl

s) Ca(OH) 2 + H 3 PO 4 → Ca 3 (PO 4 ) 2 + H 2 O

4HCl + O 2 → 2H 2 O + 2Cl 2

Al(NO 3 ) 3 + 3NaOH → Al(OH) 3 + 3NaNO 3

3H 2 + N 2 → 2NH 3

PCl 5 + 4H 2 O → H 3 PO 4 + 5HCl

2Fe + 3H 2 SO 4 → Fe 2 (SO 4 ) 3 + 3H 2

CaCl 2 + 2HNO 3 → Ca(NO 3 ) 2 + 2HCl

2KO 2 + 2H 2 O → 2KOH + O 2 + H 2 O 2

2Al + 3H 2 O → Al 2 O 3 + 3H 2

2Fe + 3Br 2 → 2FeBr 3

Cu + 4HNO 3 → Cu(NO 3 ) 2 + 2NO 2 + 2H 2 O

2Al(OH) 3 → Al 2 O 3 + 3H 2 O

4NH 3 + 5O 2 → 4NO + 6H 2 O

Ca(AlO 2 ) 2  +  8HCl → 2AlCl 3 + CaCl 2 + 4H 2 O

C 5 H 12 + 8 O 2 → 5CO 2 + 6H 2 O

P 4 O 10 + 6H 2 O → 4H 3 PO 4

Na 2 CrO 4 + Pb(NO 3 ) 2 → PbCrO 4 + 2NaNO 3

MgCl 2 + 2AgNO 3 → 2AgCl + Mg(NO 3 ) 2

4KClO 3 → 3KClO 4 + KCl

3Ca(OH) 2 + 2H 3 PO 4 → Ca 3 (PO 4 ) 2 + 6H 2 O

Consider the balanced equation:

Complete the table showing the appropriate number of moles of reactants and products.

The moles of other molecules are calculated based on the stoichiometric ratio. For the first row the moles are calculated as follows:

\[{\rm{n}}\left( {{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{2 }}\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}\;{\rm{ \times }}\;\frac{{{\rm{8}}\;{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}}}\;{\rm{ = }}\;{\rm{16}}\;{\rm{mol}}\]

\[{\rm{n}}\left( {{\rm{C}}{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{2 }}\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}\;{\rm{ \times }}\;\frac{{{\rm{5}}\;{\rm{mol}}\;C{{\rm{O}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}}}\;{\rm{ = }}\;{\rm{10}}\;{\rm{mol}}\]

\[{\rm{n}}\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)\;{\rm{ = }}\;{\rm{2 }}\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}\;{\rm{ \times }}\;\frac{{{\rm{6}}\;{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}}}\;{\rm{ = }}\;{\rm{12}}\;{\rm{mol}}\]

For the second row :

\[{\rm{n}}\left( {{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}} \right)\;{\rm{ = }}\;{\rm{2}}{\rm{.5 }}\cancel{{{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}{{8\;\cancel{{{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.3125}}\;{\rm{mol}}\]

\[{\rm{n}}\left( {{\rm{C}}{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{2}}{\rm{.5 }}\cancel{{{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{5}}\;{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}{{{\rm{8}}\;\cancel{{{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.5625}}\;{\rm{mol}}\]

\[{\rm{n}}\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)\;{\rm{ = }}\;{\rm{2}}{\rm{.5 }}\cancel{{{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{6}}\;{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}{{{\rm{8}}\;\cancel{{{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.875}}\;{\rm{mol}}\]

For the third row :

\[{\rm{n}}\left( {{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}} \right)\;{\rm{ = }}\;{\rm{3 }}\cancel{{{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}{{{\rm{5}}\;\cancel{{{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.6}}\;{\rm{mol}}\]

\[{\rm{n}}\left( {{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{3 }}\cancel{{{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{8}}\;{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}{{{\rm{5}}\;\cancel{{{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{4}}{\rm{.8}}\;{\rm{mol}}\]

\[{\rm{n}}\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)\;{\rm{ = }}\;{\rm{3 }}\cancel{{{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{6}}\;{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}{{{\rm{5}}\;\cancel{{{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{3}}{\rm{.6}}\;{\rm{mol}}\]

For the fourth row:

\[{\rm{n}}\left( {{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}} \right)\;{\rm{ = }}\;{\rm{5}}{\rm{.4 }}\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}{{{\rm{6}}\;\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.9}}\;{\rm{mol}}\]

\[{\rm{n}}\left( {{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{5}}{\rm{.4 }}\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}\;{\rm{ \times }}\;\frac{{{\rm{8}}\;{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}{{{\rm{6}}\;\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}}}\;{\rm{ = }}\;{\rm{7}}{\rm{.2}}\;{\rm{mol}}\]

\[{\rm{n}}\left( {{\rm{C}}{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{5}}{\rm{.4 }}\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}\;{\rm{ \times }}\;\frac{{{\rm{5}}\;{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}{{{\rm{6}}\;\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}}}\;{\rm{ = }}\;{\rm{4}}{\rm{.5}}\;{\rm{mol}}\]

How many grams of CO 2  and H 2 O are produced from the combustion of 220. g of propane (C 3 H 8 )?

C 3 H 8 (g) + 5O 2 (g) → 3CO 2 (g) + 4H 2 O(g)

660. g CO 2

360. g H 2 O

The amount of product, for a given amount of reactant, is calculated based on their molar/stoichiometric ratio. So, the first step is to determine the moles of propane. The overall plan is:

stoichiometry problems 2

The moles of C 3 H 8 are calculated using its molar mass:

\[{\rm{n(}}{{\rm{C}}_{\rm{3}}}{{\rm{H}}_{\rm{8}}}{\rm{)}}\;{\rm{ = }}\;{\rm{220}}{\rm{.5}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{44}}{\rm{.1}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{5}}{\rm{.00}}\;{\rm{mol}}\]

Next, we find the moles of CO 2 based on its molar ratio with C 3 H 8 :

\[{\rm{n}}\left( {{\rm{C}}{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{5}}{\rm{.00 }}\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{3}}}{{\rm{H}}_{\rm{8}}}}}\;{\rm{ \times }}\;\frac{{{\rm{3}}\;{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{3}}}{{\rm{H}}_{\rm{8}}}}}}}\;{\rm{ = }}\;{\rm{15}}{\rm{.0}}\;{\rm{mol}}\]

And finally, the mass of the CO 2 is determined using its moles and molar mass:

\[{\rm{m}}\left( {{\rm{C}}{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{15}}{\rm{.0 }}\cancel{{{\rm{mol}}\;}}\;{\rm{ \times }}\;\frac{{{\rm{44}}{\rm{.0}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;}}}}\;{\rm{ = }}\;{\rm{660}}{\rm{.}}\;{\rm{g}}\]

Follow the same procedure to find the mass of H 2 O:

\[{\rm{n}}\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)\;{\rm{ = }}\;{\rm{5}}{\rm{.00 }}\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{3}}}{{\rm{H}}_{\rm{8}}}}}\;{\rm{ \times }}\;\frac{{{\rm{4}}\;{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{3}}}{{\rm{H}}_{\rm{8}}}}}}}\;{\rm{ = }}\;{\rm{20}}{\rm{.0}}\;{\rm{mol}}\]

\[{\rm{m}}\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)\;{\rm{ = }}\;{\rm{20}}{\rm{.0 }}\cancel{{{\rm{mol}}\;}}\;{\rm{ \times }}\;\frac{{{\rm{18}}{\rm{.0}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;}}}}\;{\rm{ = }}\;{\rm{360}}{\rm{.}}\;{\rm{g}}\]

How many grams of CaCl 2 can be produced from 65.0 g of Ca(OH) 2 according to the following reaction,

Ca(OH) 2 + 2HCl → CaCl 2 + 2H 2 O

Here is the conceptual plan for solving this problem:

stoichiometry problems 2

The moles of Ca(OH) 2   are calculated using its molar mass:

\[{\rm{n}}\;{\rm{(Ca}}{\left( {{\rm{OH}}} \right)_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{65}}{\rm{.0}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{74}}{\rm{.1}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.877}}\;{\rm{mol}}\]

Next, we find the moles of CaCl 2 based on its molar ratio with Ca(OH) 2 :

\[{\rm{n}}\;\left( {{\rm{CaC}}{{\rm{l}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.877 }}\cancel{{{\rm{mol}}\;{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{\rm{CaC}}{{\rm{l}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.877}}\;{\rm{mol}}\]

Notice that moles of CaCl 2 are equal to the moles of Ca(OH) 2 . This is because of their 1:1 molar ratio in the equation.

The last step is converting the moles to mass of the CaCl 2 :

\[{\rm{m}}\left( {{\rm{CaC}}{{\rm{l}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.877 }}\cancel{{{\rm{mol}}\;}}\;{\rm{ \times }}\;\frac{{{\rm{111}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;}}}}\;{\rm{ = }}\;{\rm{97}}{\rm{.3}}\;{\rm{g}}\]

This process can, and often is shown as a one-step conversion as we do in dimensional analysis. It would be as follows:

\[{\rm{m}}\left( {{\rm{CaC}}{{\rm{l}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{65}}{\rm{.0}}\;{\cancel{{{\rm{g}}\;{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}}_{\rm{\;}}}{\rm{ \times }}\;\frac{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}}}}{{{\rm{74}}{\rm{.1}}\;\cancel{{{\rm{g}}\;{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{CaC}}{{\rm{l}}_{\rm{2}}}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{Ca}}{{\left( {{\rm{OH}}} \right)}_{\rm{2}}}}}}}\; \times \;\frac{{{\rm{111}}\;{\rm{g}}\;{\rm{CaC}}{{\rm{l}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{CaC}}{{\rm{l}}_{\rm{2}}}\;}}}}\;\;{\rm{ = }}\;{\rm{97}}{\rm{.3}}\;{\rm{g}}\]

This method is completely fine, however, I prefer doing these conversions stepwise to better see what happens in each step, and therefore, most exercises will be solved by doing one conversion at a time.

How many moles of oxygen are formed when 75.0 g of Cu(NO 3 ) 2 decomposes according to the following reaction?

2Cu(NO 3 ) 2   → 2CuO + 4NO 2  + O 2

The amount of product, for a given amount of reactant, is calculated based on their molar/stoichiometric ratio.

So, the conceptual plan is:

stoichiometry problems 2

\[{\rm{n}}\;{\rm{(Cu}}{\left( {{\rm{N}}{{\rm{O}}_{\rm{3}}}} \right)_{\rm{2}}}{\rm{\;)}}\;{\rm{ = }}\;{\rm{75}}{\rm{.0}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{187}}{\rm{.5}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.400}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {{{\rm{O}}_{{\rm{2\;}}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.400}}\;\cancel{{{\rm{mol}}\;{\rm{Cu}}{{\left( {{\rm{N}}{{\rm{O}}_{\rm{3}}}} \right)}_{\rm{2}}}{\rm{\;}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}{{\cancel{{{\rm{2}}\;{\rm{mol}}\;{\rm{Cu}}{{\left( {{\rm{N}}{{\rm{O}}_{\rm{3}}}} \right)}_{\rm{2}}}{\rm{\;}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.200}}\;{\rm{mol}}\]

How many grams of MnCl 2  can be prepared from 52.1 grams of MnO 2 ?

MnO 2  + 4HCl → MnCl 2  + Cl 2  + 2H 2 O

stoichiometry problems 2

The moles of MnO 2 are calculated using its molar mass:

\[{\rm{n}}\;{\rm{(Mn}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{52}}{\rm{.1}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{86}}{\rm{.9}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.600}}\;{\rm{mol}}\]

Next, we find the moles of MnCl 2 based on its molar ratio with MnO 2 :

\[{\rm{n}}\;\left( {{\rm{MnC}}{{\rm{l}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.600 }}\cancel{{{\rm{mol}}\;{\rm{Mn}}{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{\rm{MnC}}{{\rm{l}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{Mn}}{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.600}}\;{\rm{mol}}\]

And finally, the mass of the MnCl 2 is determined using its moles and molar mass:

\[{\rm{m}}\left( {{\rm{MnC}}{{\rm{l}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.600 }}\cancel{{{\rm{mol}}\;}}\;{\rm{ \times }}\;\frac{{{\rm{125}}{\rm{.8}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;}}}}\;{\rm{ = }}\;{\rm{75}}{\rm{.5g}}\]

Determine the mass of oxygen that is formed when an 18.3-g sample of potassium chlorate is decomposed according to the following equation:

2KClO 3 (s) → 2KCl(s) + 3O 2 (g).

The amount of product, for a given amount of reactant, is calculated based on their molar/stoichiometric ratio. So, the first step is to determine the moles of propane. The conceptual plan is:

stoichiometry problems 2

\[{\rm{n}}\;{\rm{(KCl}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\;{\rm{ = }}\;{\rm{18}}{\rm{.3}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{122}}{\rm{.6}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.149}}\;{\rm{mol}}\]

Next, we find the moles of O 2 based on its molar ratio with KClO 3 :

\[{\rm{n}}\;\left( {{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.149 }}\cancel{{{\rm{mol}}\;{\rm{KCl}}{{\rm{O}}_{\rm{3}}}}}\;{\rm{ \times }}\;\frac{{{\rm{3}}\;{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}{{{\rm{2}}\;\cancel{{{\rm{mol}}\;{\rm{KCl}}{{\rm{O}}_{\rm{3}}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.224}}\;{\rm{mol}}\]

\[{\rm{m}}\left( {{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.224 }}\cancel{{{\rm{mol}}\;}}\;{\rm{ \times }}\;\frac{{{\rm{32}}{\rm{.0}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;}}}}\;{\rm{ = }}\;{\rm{7}}{\rm{.16}}\;{\rm{g}}\]

How many grams of H 2 O will be formed when 48.0 grams H 2 are mixed with excess hydrogen gas?

2H 2  + O 2 → 2H 2 O

stoichiometry problems 2

The moles of H 2 O are calculated using its molar mass:

\[{\rm{n}}\;{\rm{(}}{{\rm{H}}_2}{\rm{)}}\;{\rm{ = }}\;{\rm{48}}{\rm{.0}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{2}}{\rm{.00}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{24}}{\rm{.0}}\;{\rm{mol}}\]

Next, we find the moles of H 2 O based on its molar ratio with H 2 :

\[{\rm{n}}\;\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)\;{\rm{ = }}\;{\rm{24}}{\rm{.0 }}\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{2}}\;{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}}}{{{\rm{2}}\;\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{24}}{\rm{.0}}\;{\rm{mol}}\]

And finally, the mass of the H 2 O is determined using its moles and molar mass:

\[{\rm{m}}\left( {{{\rm{H}}_{\rm{2}}}{\rm{O}}} \right)\;{\rm{ = }}\;{\rm{24}}{\rm{.0 }}\cancel{{{\rm{mol}}\;}}\;{\rm{ \times }}\;\frac{{{\rm{18}}{\rm{.0}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;}}}}\;{\rm{ = }}\;{\rm{432}}\;{\rm{g}}\]

Consider the chlorination reaction of methane (CH4):

CH 4 (g) + 4Cl 2 (g) → CCl 4 (g) + 4HCl(g)

How many moles of CH 4 were used in the reaction if 51.9 g of CCl4 were obtained?

The amount of a reactant, for a given amount of product, is calculated based on their molar/stoichiometric ratio. So, the first step is to determine the moles of carbon tetrachloride, CCl 4 . The conceptual plan is:

stoichiometry problems 2

The moles of CCl 4 are calculated using its molar mass:

\[{\rm{n}}\;{\rm{(CC}}{{\rm{l}}_{\rm{4}}}{\rm{)}}\;{\rm{ = }}\;{\rm{51}}{\rm{.9}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{153}}{\rm{.8}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.337}}\;{\rm{mol}}\]

Next, we find the moles of CH 4 based on its molar ratio with CCl 4.  It is a 1:1 ratio, so there is going to be 0.337 mol CH 4 :

\[{\rm{n}}\;\left( {{\rm{C}}{{\rm{H}}_{\rm{4}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.337 }}\cancel{{{\rm{mol}}\;{\rm{CC}}{{\rm{l}}_{\rm{4}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{\rm{C}}{{\rm{H}}_{\rm{4}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{CC}}{{\rm{l}}_{\rm{4}}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.337}}\;{\rm{mol}}\]

How many grams of Ba(NO 3 ) 2 can be produced by reacting 16.5 g of HNO 3 with an excess of Ba(OH) 2 ?

We need to first write the balanced chemical equation to do the calculations:

Ba(OH) 2 + 2HNO 3 → Ba(NO 3 ) 2 + 2H 2 O

The conceptual plan would be:

stoichiometry problems 2

So, let’s start with the moles of HNO 3 :

\[{\rm{n}}\;{\rm{(HN}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\;{\rm{ = }}\;{\rm{16}}{\rm{.5}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{63}}{\rm{.0}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.262}}\;{\rm{mol}}\]

Once we have the moles, we can determine the moles of Ba(NO 3 ) 2 based on the molar ratio, and then convert the moles to the mass:

\[{\rm{n}}\;\left( {{\rm{Ba}}{{\left( {{\rm{N}}{{\rm{O}}_{\rm{3}}}} \right)}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.262 }}\cancel{{{\rm{mol}}\;{\rm{HN}}{{\rm{O}}_{\rm{3}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{\rm{Ba}}{{\left( {{\rm{N}}{{\rm{O}}_{\rm{3}}}} \right)}_{\rm{2}}}}}{{{\rm{2}}\;\cancel{{{\rm{mol}}\;{\rm{HN}}{{\rm{O}}_{\rm{3}}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.131}}\;{\rm{mol}}\]

\[{\rm{m}}\left( {{\rm{Ba}}{{\left( {{\rm{N}}{{\rm{O}}_{\rm{3}}}} \right)}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.131 }}\cancel{{{\rm{mol}}\;}}\;{\rm{ \times }}\;\frac{{{\rm{261}}{\rm{.3}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;}}}}\;{\rm{ = }}\;{\rm{34}}{\rm{.2}}\;{\rm{g}}\]

Ethanol can be obtained by fermentation – a complex chemical process breaking down glucose to ethanol and carbon dioxide.

                                                  C 6 H 12 O 6    →    2C 2 H 5 OH   +    2CO 2                                                       glucose                   ethanol

How many mL of ethanol (d =0.789 g/mL) can be obtained by this process starting with 286 g of glucose?

This problem has an additional step of converting the mass of the product to volume. Other than that, we follow the same strategy and steps as in the previous problems:

stoichiometry problems 2

\[{\rm{n}}\;{\rm{(}}{{\rm{C}}_{\rm{6}}}{{\rm{H}}_{{\rm{12}}}}{{\rm{O}}_{\rm{6}}}{\rm{)}}\;{\rm{ = }}\;{\rm{286}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{180}}{\rm{.2}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.59}}\;{\rm{mol}}\]

Now, we can find the moles of C 2 H 5 OH:

\[{\rm{n}}\;\left( {{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{OH}}} \right)\;{\rm{ = }}\;{\rm{1}}{\rm{.59 }}\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{6}}}{{\rm{H}}_{{\rm{12}}}}{{\rm{O}}_{\rm{6}}}}}\;{\rm{ \times }}\;\frac{{{\rm{2}}\;{\rm{mol}}\;{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{OH}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{6}}}{{\rm{H}}_{{\rm{12}}}}{{\rm{O}}_{\rm{6}}}}}}}\;{\rm{ = }}\;{\rm{3}}{\rm{.18}}\;{\rm{mol}}\]

\[{\rm{m}}\left( {{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{OH}}} \right)\;{\rm{ = }}\;{\rm{3}}{\rm{.18 }}\cancel{{{\rm{mol}}\;}}\;{\rm{ \times }}\;\frac{{{\rm{46}}{\rm{.1}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;}}}}\;{\rm{ = }}\;{\rm{147}}\;{\rm{g}}\]

The last step is converting the mass to volume:

\[{\rm{v}}\left( {{{\rm{C}}_{\rm{2}}}{{\rm{H}}_{\rm{5}}}{\rm{OH}}} \right)\;{\rm{ = }}\;{\rm{147}}\;\cancel{{\rm{g}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mL}}}}{{{\rm{0}}{\rm{.789}}\;\cancel{{\rm{g}}}}}\;{\rm{ = }}\;{\rm{186}}\;{\rm{mL}}\]

36.0 g of butane (C 4 H 10 ) was burned in an excess of oxygen and the resulting carbon dioxide (CO 2 ) was collected in a sealed vessel.

2C 4 H 10 + 13O 2 → 8CO 2 + 10H 2 O

How many grams of LiOH will be necessary to consume all the CO 2 from the first reaction?

2LiOH + CO 2 → Li 2 CO 3 + H 2 O

There are two reactions here, and the link between them is the CO 2 that is formed in the first reaction and used in the second.

So, the plan would be to determine the moles of CO 2 in the first reaction, and use it to calculate the moles, and consequently the mass of LiOH.

stoichiometry problems 2

\[{\rm{n}}\;{\rm{(}}{{\rm{C}}_{\rm{4}}}{{\rm{H}}_{{\rm{10}}}}{\rm{)}}\;{\rm{ = }}\;{\rm{36}}{\rm{.0}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{58}}{\rm{.1}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.620}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {{\rm{C}}{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.620 }}\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{4}}}{{\rm{H}}_{{\rm{10}}}}}}\;{\rm{ \times }}\;\frac{{{\rm{8}}\;{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}{{{\rm{2}}\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{4}}}{{\rm{H}}_{{\rm{10}}}}}}}}\;{\rm{ = }}\;{\rm{2}}{\rm{.48}}\;{\rm{mol}}\]

This is the amount of CO 2 that will be reacted with LiOH in a 1:2 ratio. So, we can determine the moles of LiOH and convert them to the mass:

\[{\rm{n}}\;\left( {{\rm{LiOH}}} \right)\;{\rm{ = }}\;{\rm{2}}{\rm{.48 }}\cancel{{{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{2}}\;{\rm{mol}}\;{\rm{LiOH}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{4}}{\rm{.96}}\;{\rm{mol}}\]

\[{\rm{m}}\;\left( {{\rm{LiOH}}} \right)\;{\rm{ = }}\;{\rm{4}}{\rm{.96}}\;\cancel{{{\rm{mol}}\;{\rm{LiOH}}}}\;{\rm{ \times }}\;\frac{{{\rm{24}}{\rm{.0}}\;{\rm{g}}\;{\rm{LiOH}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{LiOH}}}}}}\;{\rm{ = }}\;{\rm{119}}\;{\rm{g}}\;\]

13. Which statement about limiting reactant is correct?

a) The limiting reactant is the one in a smaller quantity.

b) The limiting reactant is the one in greater quantity.

c) The limiting reactant is the one producing less product.

d) The limiting reactant is the one producing more product.

c) The limiting reactant is the one producing less product than any of the other reactants.

Find the limiting reactant for each initial amount of reactants.

a) 2 mol of NH 3 and 2 mol of O 2

b) 2 mol of NH 3 and 3 mol of O 2

c) 3 mol of NH 3 and 3 mol of O 2

d) 3 mol of NH 3 and 2 mol of O 2

Note:  This is not a multiple-choice question. Each row represents a separate question where you need to determine the limiting reactant.

The limiting reactant is the one producing less product. So, to determine the limiting reactant for each pair, we need to pick a product (NO or H 2 O) and see whether NH 3 or O 2 will produce less product for the given mole ratio.

Let’s do the calculations based on the amount of NO that can be formed.

\[{\rm{n}}\;\left( {{\rm{NO}}} \right)\;{\rm{ = }}\;{\rm{2 }}\cancel{{{\rm{mol}}\;{\rm{N}}{{\rm{H}}_{\rm{3}}}}}\;{\rm{ \times }}\;\frac{{{\rm{4}}\;{\rm{mol}}\;{\rm{NO}}}}{{{\rm{4}}\;\cancel{{{\rm{mol}}\;{\rm{N}}{{\rm{H}}_{\rm{3}}}}}}}\;{\rm{ = }}\;{\rm{2}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {{\rm{NO}}} \right)\;{\rm{ = }}\;{\rm{2 }}\cancel{{{\rm{mol}}\;{{\rm{O}}_2}}}\;{\rm{ \times }}\;\frac{{{\rm{4}}\;{\rm{mol}}\;{\rm{NO}}}}{{{\rm{5}}\;\cancel{{{\rm{mol}}\;{{\rm{O}}_2}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.6}}\;{\rm{mol}}\]

So, for (a), O 2 is the limiting reactant.

\[{\rm{n}}\;\left( {{\rm{NO}}} \right)\;{\rm{ = }}\;{\rm{3 }}\cancel{{{\rm{mol}}\;{{\rm{O}}_2}}}\;{\rm{ \times }}\;\frac{{{\rm{4}}\;{\rm{mol}}\;{\rm{NO}}}}{{{\rm{5}}\;\cancel{{{\rm{mol}}\;{{\rm{O}}_2}}}}}\;{\rm{ = }}\;{\rm{2}}{\rm{.4}}\;{\rm{mol}}\]

So, for (b), NO is the limiting reactant.

\[{\rm{n}}\;\left( {{\rm{NO}}} \right)\;{\rm{ = }}\;{\rm{3 }}\cancel{{{\rm{mol}}\;{\rm{N}}{{\rm{H}}_{\rm{3}}}}}\;{\rm{ \times }}\;\frac{{{\rm{4}}\;{\rm{mol}}\;{\rm{NO}}}}{{{\rm{4}}\;\cancel{{{\rm{mol}}\;{\rm{N}}{{\rm{H}}_{\rm{3}}}}}}}\;{\rm{ = }}\;{\rm{3}}\;{\rm{mol}}\]

So, for (c), O 2 is the limiting reactant.

So, for (d), O 2 is the limiting reactant.

The shorter way of determining the limiting reactant is to divide the moles of a given reactant by its coefficient in the chemical reaction. This is the effective quantity of the reactant as it takes into consideration not only the amount of the reactant but also its molar ratio in the reaction.

Let’s put the equation and the moles here and determine the LR by the ratio of the moles and coefficient:

4 NH 3 + 5 O 2 → 4NO + 6H 2 O

So, for (a), we are comparing 2 / 4 mol of NH 3 with 2 / 5 mol of O 2 , and therefore, O 2 is the LR.

For (b), we are comparing 2 / 4 mol of NH 3 with 3 / 5 mol of O 2 , and therefore, NH 3 is the LR.

For (c), we are comparing 3 / 4 mol of NH 3 with 3 / 5 mol of O 2 , and therefore, O 2 is the LR.

For (d),  3 mol of NH 3 and 3 / 4 mol of NH 3 with 2 / 5 mol of O 2 , and therefore, O 2 is the LR.

How many g of hydrogen are left over in producing ammonia when 14.0 g of nitrogen is reacted with 8.0 g of hydrogen?

N 2 (g) + 3 H 2 (g) → 2 NH 3 (g)

When the amounts of both reactants are given, you must determine the LR and then, based on the moles of the LR, determine the amount of product(s) that can be formed. This is the standard procedure when working on examples covering limiting reactant.

Now, in this problem, we are not asked to determine the amount of any product, but rather we need to determine how much hydrogen is left out once the reaction is complete. This already tells us that the nitrogen is the LR because some of the hydrogen remains unreacted, so it must’ve been in excess.

The first step is, as always, to determine the moles of the reactants, then using the mole ratio, calculate how much hydrogen has reacted. The remaining mass of the hydrogen is calculated by subtracting this amount from the initial mass.

\[{\rm{n}}\;{\rm{(}}{{\rm{N}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{14}}{\rm{.0}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{28}}{\rm{.0}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.500}}\;{\rm{mol}}\]

\[{\rm{n}}\;{\rm{(}}{{\rm{H}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{8}}{\rm{.0}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{2}}{\rm{.0}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{4}}{\rm{.0}}\;{\rm{mol}}\]

The moles of hydrogen reacted are calculated based on the moles of the nitrogen which is the limiting reactant:

\[{\rm{n}}\;\left( {{{\rm{H}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.500 }}\cancel{{{\rm{mol}}\;{{\rm{N}}_2}}}\;{\rm{ \times }}\;\frac{{{\rm{3}}\;{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{N}}_2}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.50}}\;{\rm{mol}}\]

So, there are:

4.0 – 1.50 = 2.5 mol H 2 left out

\[{\rm{m}}\;{\rm{(}}{{\rm{H}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{2}}{\rm{.5}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{2}}{\rm{.0}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{5}}{\rm{.0}}\;{\rm{g}}\]

How many grams of PCl 3 will be produced if 130.5 g Cl 2 is reacted with 56.4 g P 4 according to the following equation?

6Cl 2 (g) + P 4 (s) → 4PCl 3 (l)

When the amounts of both reactants are given, you must determine the LR and then, based on the moles of the LR, determine the amount of product(s) that can be formed.

The moles of Cl 2 and P 4 are:

\[{\rm{n}}\;{\rm{(C}}{{\rm{l}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;130.5\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{70}}{\rm{.9}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.84}}\;{\rm{mol}}\]

\[{\rm{n}}\;{\rm{(}}{{\rm{P}}_{\rm{4}}}{\rm{)}}\;{\rm{ = }}\;{\rm{56}}{\rm{.4}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{123}}{\rm{.9}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.455}}\;{\rm{mol}}\]

Next, we calculate how much PCl 3 can be formed from each reactant:

\[{\rm{n}}\;\left( {{\rm{PC}}{{\rm{l}}_{\rm{3}}}} \right)\;{\rm{ = }}\;{\rm{1}}{\rm{.84 }}\cancel{{{\rm{mol}}\;{\rm{C}}{{\rm{l}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{4}}\;{\rm{mol}}\;{\rm{PC}}{{\rm{l}}_{\rm{3}}}}}{{{\rm{6}}\;\cancel{{{\rm{mol}}\;{\rm{C}}{{\rm{l}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.23}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {{\rm{PC}}{{\rm{l}}_{\rm{3}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.455 }}\cancel{{{\rm{mol}}\;{{\rm{P}}_{\rm{4}}}}}\;{\rm{ \times }}\;\frac{{{\rm{4}}\;{\rm{mol}}\;{\rm{PC}}{{\rm{l}}_{\rm{3}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{P}}_{\rm{4}}}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.82}}\;{\rm{mol}}\]

Cl 2 gives less PCl 3 and therefore, it is the LR and 1.23 mol of PCl 3 can be produced in this reaction.

The mass of PCl 3 is:

\[{\rm{m}}\;{\rm{(PC}}{{\rm{l}}_{\rm{3}}}{\rm{)}}\;{\rm{ = }}\;{\rm{1}}{\rm{.23}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{137}}{\rm{.3}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{169}}\;{\rm{g}}\]

How many grams of sulfur can be obtained if 12.6 g H 2 S is reacted with 14.6 g SO 2 according to the following equation?

2H 2 S(g) + SO 2 (g) → 3S(s) + 2H 2 O(g)

When the amount of both reactants is given, you must determine the LR and then, based on the moles of the LR, determine the amount of product(s) that can be formed.

The moles of H 2 S and SO 2 are:

\[{\rm{n}}\;{\rm{(}}{{\rm{H}}_{\rm{2}}}{\rm{S)}}\;{\rm{ = }}\;{\rm{12}}{\rm{.6}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{34}}{\rm{.1}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.370}}\;{\rm{mol}}\]

\[{\rm{n}}\;{\rm{(S}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{14}}{\rm{.6}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{64}}{\rm{.1}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.228}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {\rm{S}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.370 }}\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{S}}}}\;{\rm{ \times }}\;\frac{{{\rm{3}}\;{\rm{mol}}\;{\rm{S}}}}{{{\rm{2}}\;\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}{\rm{S}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.555}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {\rm{S}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.228 }}\cancel{{{\rm{mol}}\;{\rm{S}}{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{3}}\;{\rm{mol}}\;{\rm{S}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{S}}{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.684}}\;{\rm{mol}}\]

H 2 S gives less S and therefore, it is the LR and 0.555 mol of S can be produced in this reaction.

The mass of S is:

\[{\rm{m}}\;{\rm{(S)}}\;{\rm{ = }}\;{\rm{0}}{\rm{.555}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{32}}{\rm{.1}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{17}}{\rm{.8}}\;{\rm{g}}\]

The following equation represents the combustion of octane, C 8 H 18 , a component of gasoline:

2C 8 H 18 (g) + 25O 2 (g) → 16CO 2 (g) + 18H 2 O(g)

Will 356 g of oxygen be enough for the complete combustion of 954 g of octane?

356 g of oxygen is not enough for the complete combustion of 954 g of octane.

First, calculate the moles of the reactants:

\[{\rm{n}}\;{\rm{(}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{356}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{32}}{\rm{.0}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{11}}{\rm{.4}}\;{\rm{mol}}\]

\[{\rm{n}}\;{\rm{(}}{{\rm{C}}_{\rm{8}}}{{\rm{H}}_{{\rm{18}}}}{\rm{)}}\;{\rm{ = }}\;{\rm{954}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{114}}{\rm{.2}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{8}}{\rm{.35}}\;{\rm{mol}}\]

And now let’s see how many moles of O 2 are needed to react with 8.35 mol of C 8 H 18 :

\[{\rm{n}}\;\left( {{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{8}}{\rm{.35 }}\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{8}}}{{\rm{H}}_{{\rm{18}}}}}}\;{\rm{ \times }}\;\frac{{{\rm{25}}\;{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}{{{\rm{2}}\;\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{8}}}{{\rm{H}}_{{\rm{18}}}}}}}}\;{\rm{ = }}\;{\rm{104}}\;{\rm{mol}}\]

104 moles of O 2 are needed to react with only 8.35 mol of C 8 H 18 and this is because of the 25:2 mole ratio. So, 356 g of oxygen is not enough for the complete combustion of 954 g of octane.

When 140.0 g of AgNO 3 was added to an aqueous solution of NaCl, 86.0 g of AgCl was collected as a white precipitate. Which salt was the limiting reactant in this reaction? How many grams of NaCl were present in the solution when AgNO 3 was added?

AgNO 3 (aq) + NaCl(aq) → AgCl(s) + NaNO 3 (aq)

NaCl was the limiting reactant and 35.0 g of it were present in the solution when AgNO 3  was added.

We need to find the moles of AgCl which will allow us to calculate how much AgNO 3 and NaCl had reacted in the reaction.

\[{\rm{n}}\;{\rm{(AgCl)}}\;{\rm{ = }}\;{\rm{86}}{\rm{.0}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{143}}{\rm{.3}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.600}}\;{\rm{mol}}\]

The stoichiometric ratio of all the reactants and products is1:1, and therefore, there were 0.600 mol of AgNO 3 and 0.600 mol of NaCl participating in the reaction.

Now, let’s calculate the moles of 140.0 g of AgNO 3  and see whether it corresponds to 0.600 mol. If it is more than that, then AgNO 3 was added in excess and NaCl must be the limiting reactant:

\[{\rm{n}}\;{\rm{(AgN}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\;{\rm{ = }}\;{\rm{140}}{\rm{.0}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{169}}{\rm{.9}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.824}}\;{\rm{mol}}\]

So, 0.824 mol of AgNO 3 were added to the solution, but only 0.600 mol had reacted which means that is how much NaCl was present in the solution, and it was not enough to react with all the AgNO 3.

And this confirms that AgNO 3 was added in excess and NaCl is the limiting reactant .

In the last step, we determine the mass of 0.600 mol NaCl that was in the solution when AgNO 3 was added:

\[{\rm{m}}\;{\rm{(NaCl)}}\;{\rm{ = }}\;{\rm{0}}{\rm{.600}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{58}}{\rm{.4}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{35}}{\rm{.0}}\;{\rm{g}}\]

Consider the reaction between MnO 2 and HCl:

MnO 2 + 4HCl → MnCl 2 + Cl 2 + 2H 2 O

What is the theoretical yield of MnCl 2 in grams when 165 g of MnO 2 is added to a solution containing 94.2 g of HCl?

0.645 mol or 81.1 g MnCl 2

The theoretical yield is the amount of product that can be formed, so this problem is similar to the ones we have been working on.

The amounts of both reactants are given, so we determine the LR and then, based on the moles of the LR, determine the amount of product(s) that can be formed.

The moles of MnO 2 and HCl are:

\[{\rm{n}}\;{\rm{(Mn}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{165}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{86}}{\rm{.9}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.90}}\;{\rm{mol}}\]

\[{\rm{n}}\;{\rm{(HCl)}}\;{\rm{ = }}\;{\rm{94}}{\rm{.2}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{36}}{\rm{.5}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{2}}{\rm{.58}}\;{\rm{mol}}\]

Next, we calculate how much MnCl 2 can be formed from each reactant:

\[{\rm{n}}\;\left( {{\rm{MnC}}{{\rm{l}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{1}}{\rm{.90 }}\cancel{{{\rm{mol}}\;{\rm{Mn}}{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{\rm{MnC}}{{\rm{l}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{Mn}}{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.90}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {{\rm{MnC}}{{\rm{l}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{2}}{\rm{.58 }}\cancel{{{\rm{mol}}\;{\rm{HCl}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{\rm{MnC}}{{\rm{l}}_{\rm{2}}}}}{{{\rm{4}}\;\cancel{{{\rm{mol}}\;{\rm{HCl}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.645}}\;{\rm{mol}}\]

HCl gives less product so, it is the LR, and therefore, 0.645 mol MnCl 2 is the theoretical yield of the reaction.

If you are asked to find the theoretical yield in grams, then convert the moles to grams using the molar mass of MnCl 2:

\[{\rm{m}}\;{\rm{(MnC}}{{\rm{l}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{0}}{\rm{.645}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{125}}{\rm{.8}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{81}}{\rm{.1}}\;{\rm{g}}\]

Percent Yield

21. In a chemistry experiment, a student obtained 5.68 g of a product. What is the percent yield of the product if the theoretical yield was 7.12 g?

The percent yield of the reaction is the ratio of the actual over the theoretical yield. What we obtain is the actual yield and the maximum amount of product that can be obtained from the given amount of the limiting reactant is the theoretical yield .

So, in this example, the actual yield is 5.68 g, and the theoretical yield is 7.12 g.

\[{\rm{\% }}\;{\rm{Yield}}\;{\rm{ = }}\;\frac{{\rm{A}}}{{\rm{T}}}\;{\rm{ = }}\;\frac{{{\rm{5}}{\rm{.68}}\;{\rm{g}}}}{{{\rm{7}}{\rm{.12}}\;{\rm{g}}}}\; \times \;100\% \; = \;79.8\;\% \]

When 38.45 g CCl 4 is reacted with an excess of HF, 21.3 g CCl 2 F 2 is obtained. Calculate the theoretical and percent yields of this reaction.

CCl 4 + 2HF → CCl 2 F 2 + 2HCl

To find the theoretical yield, we need to calculate the moles of CCl 4 and, using the mole ratio, determine how much CCl 2 F 2 can be formed.

\[{\rm{n}}\;{\rm{(CC}}{{\rm{l}}_{\rm{4}}}{\rm{)}}\;{\rm{ = }}\;{\rm{38}}{\rm{.45}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{153}}{\rm{.8}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.250}}\;{\rm{mol}}\]

The amount of CCl 2 F 2 that can be formed from this is also 0.250 mol because of the 1:1 molar ratio:

\[{\rm{n}}\;\left( {{\rm{CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.25 }}\cancel{{{\rm{mol}}\;{\rm{CC}}{{\rm{l}}_{\rm{4}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{\rm{CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{CC}}{{\rm{l}}_{\rm{4}}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.25}}\;{\rm{mol}}\]

The mass, which is also the theoretical yield of CCl 2 F 2 is:

\[{\rm{m}}\;{\rm{(CC}}{{\rm{l}}_{\rm{2}}}{{\rm{F}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{0}}{\rm{.250}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{120}}{\rm{.9}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{30}}{\rm{.2}}\;{\rm{g}}\]

The percent yield of the reaction is the ratio of the actual over the theoretical yield:

\[{\rm{\% }}\;{\rm{Yield}}\;{\rm{ = }}\;\frac{{\rm{A}}}{{\rm{T}}}\;{\rm{ = }}\;\frac{{{\rm{21}}{\rm{.3}}\;{\rm{g}}}}{{{\rm{30}}{\rm{.2}}\;{\rm{g}}}}\; \times \;100\% \; = \;70.5\;\% \]

Iron(III) oxide reacts with carbon monoxide according to the equation:

Fe 2 O 3 ( s ) + 3CO( g ) → 2Fe( s ) + 3CO 2 ( g )

What is the percent yield of this reaction if 623 g of iron oxide produces 341 g of iron?

The actual yield of the reaction is given as 341 g Fe so, to determine the percent yield, we need to first calculate the theoretical yield. This is the amount of Fe that can be formed if all the starting material (in this case Fe 2 O 3 ) converts into a product according to the chemical equation.

So, we are going to calculate the moles of 623 g Fe 2 O 3 and determine the moles and the mass of the iron based on the stoichiometric ratio:

\[{\rm{n}}\;{\rm{(F}}{{\rm{e}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\;{\rm{ = }}\;{\rm{623}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{159}}{\rm{.7}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{3}}{\rm{.90}}\;{\rm{mol}}\]

The amount of Fe   that can be formed from this is calculated using the mole ratio of the oxide and iron:

\[{\rm{n}}\;\left( {{\rm{Fe}}} \right)\;{\rm{ = }}\;{\rm{3}}{\rm{.90 }}\cancel{{{\rm{mol}}\;{\rm{F}}{{\rm{e}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}}\;{\rm{ \times }}\;\frac{{{\rm{2}}\;{\rm{mol}}\;{\rm{Fe}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{F}}{{\rm{e}}_{\rm{2}}}{{\rm{O}}_{\rm{3}}}}}}}\;{\rm{ = }}\;{\rm{7}}{\rm{.80}}\;{\rm{mol}}\]

The mass, which is also the theoretical yield of Fe is:

\[{\rm{m}}\;{\rm{(Fe)}}\;{\rm{ = }}\;{\rm{7}}{\rm{.80}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{55}}{\rm{.8}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{435}}\;{\rm{g}}\]

\[{\rm{\% }}\;{\rm{Yield}}\;{\rm{ = }}\;\frac{{\rm{A}}}{{\rm{T}}}\;{\rm{ = }}\;\frac{{{\rm{341}}\;{\rm{g}}}}{{{\rm{435}}\;{\rm{g}}}}\; \times \;100\% \; = \;78.4\;\% \]

Determine the percent yield of the reaction if 77.0 g of CO 2  are formed from burning 2.00 moles of C 5 H 12  in 4.00 moles of O 2 .

C 5 H 12 + 8 O 2 → 5CO 2  + 6H 2 O

When the amount of both reactants is given, you must determine the LR and then, based on the moles of the LR, determine the amount of product(s) that can be formed. This would be the theoretical yield of CO 2.

Now, we are given the moles of the reactants, so we calculate how much CO 2 can each produce:

\[{\rm{n}}\;\left( {{\rm{C}}{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{2}}{\rm{.00 }}\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}\;{\rm{ \times }}\;\frac{{{\rm{5}}\;{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{C}}_{\rm{5}}}{{\rm{H}}_{{\rm{12}}}}}}}}\;{\rm{ = }}\;{\rm{10}}{\rm{.0}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {{\rm{C}}{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{4}}{\rm{.00 }}\cancel{{{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{5}}\;{\rm{mol}}\;{\rm{C}}{{\rm{O}}_{\rm{2}}}}}{{{\rm{8}}\;\cancel{{{\rm{mol}}\;{{\rm{O}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{2}}{\rm{.50}}\;{\rm{mol}}\]

Because oxygen gives less product, it is the LR, and therefore, 2.50 mol CO 2 could be formed in this reaction. This is the theoretical yield which is grams is:

\[{\rm{m}}\;{\rm{(C}}{{\rm{O}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{2}}{\rm{.50}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{44}}{\rm{.0}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{110}}{\rm{.}}\;{\rm{g}}\]

\[{\rm{\% }}\;{\rm{Yield}}\;{\rm{ = }}\;\frac{{\rm{A}}}{{\rm{T}}}\;{\rm{ = }}\;\frac{{{\rm{77}}{\rm{.0}}\;{\rm{g}}}}{{{\rm{110}}{\rm{.}}\;{\rm{g}}}}\; \times \;100\% \; = \;70.0\;\% \]

The percent yield for the following reaction was determined to be 84%:

N 2 ( g ) + 2H 2 ( g ) → N 2 H 4 ( l )

How many grams of hydrazine (N 2 H 4 ) can be produced when 38.36 g of nitrogen reacts with 6.68 g of hydrogen?

The problem asks us to find the actual yield of the reaction given that the percent yield is 80%.

When the amounts of both reactants are given, you must determine the LR and then, based on the moles of the LR, determine the amount of product(s) that can be formed. This would be the theoretical yield of hydrazine, and we can use it with the percent yield to find the actual yield of the reaction.

\[{\rm{n}}\;{\rm{(}}{{\rm{N}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{38}}{\rm{.36}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{28}}{\rm{.0}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.37}}\;{\rm{mol}}\]

\[{\rm{n}}\;{\rm{(}}{{\rm{H}}_{\rm{2}}}{\rm{)}}\;{\rm{ = }}\;{\rm{6}}{\rm{.68}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{2}}{\rm{.00}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{3}}{\rm{.34}}\;{\rm{mol}}\]

Now, we are given the moles of the reactants, so we calculate how much N 2 H 4 can each produce:

\[{\rm{n}}\;\left( {{{\rm{N}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}} \right)\;{\rm{ = }}\;{\rm{1}}{\rm{.37 }}\cancel{{{\rm{mol}}\;{{\rm{N}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{{\rm{N}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{N}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.37}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {{{\rm{N}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}} \right)\;{\rm{ = }}\;{\rm{3}}{\rm{.34 }}\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{{\rm{N}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}}}{{{\rm{2}}\;\cancel{{{\rm{mol}}\;{{\rm{H}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.67}}\;{\rm{mol}}\]

N 2 gives less hydrazine so, it is the LR, and therefore the theoretical yield of N 2 H 4 is 1.37 mol. The mass of N 2 H 4 is:

\[{\rm{m}}\;{\rm{(}}{{\rm{N}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}_{\rm{2}}{\rm{)}}\;{\rm{ = }}\;{\rm{1}}{\rm{.37}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{32}}{\rm{.0}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{43}}{\rm{.8}}\;{\rm{g}}\]

The percent yield of the reaction is the ratio of the actual over the theoretical yield, so rearranging this equation we can calculate the actual yield:

\[{\rm{\% }}\;{\rm{Yield}}\;{\rm{ = }}\;\frac{{\rm{A}}}{{\rm{T}}}\;\]

A = T x % Yield

A = 43.8 x 0.84 = 36.8 g

Another approach for determining the actual yield is to convert the moles of limiting reactant to the percentage of the percent yield. So, if the yield is 84%, we could have multiplied the moles of N 2 by 0.84 and determine the mass of N 2 H 4 based on that.

We would have 1.37 mole x 0.84 = 1.1508 mol N 2 which is the moles of nitrogen that actually convert into hydrazine. By the mole ratio, the moles of N 2 H 4 would be:

\[{\rm{n}}\;\left( {{{\rm{N}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}} \right)\;{\rm{ = }}\;{\rm{1}}{\rm{.1508 }}\cancel{{{\rm{mol}}\;{{\rm{N}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{{\rm{N}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{{\rm{N}}_{\rm{2}}}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.1508}}\;{\rm{mol}}\]

And the mass would be:

\[{\rm{m}}\;{\rm{(}}{{\rm{N}}_{\rm{2}}}{{\rm{H}}_{\rm{4}}}_{\rm{2}}{\rm{)}}\;{\rm{ = }}\;{\rm{1}}{\rm{.1508}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{32}}{\rm{.0}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{36}}{\rm{.8}}\;{\rm{g}}\]

Silver metal can be prepared by reducing its nitrate, AgNO 3  with copper according to the following equation:

Cu( s ) + 2AgNO 3 ( aq ) → Cu(NO 3 ) 2 ( aq ) + 2Ag( s )

What is the percent yield of the reaction if 71.5 grams of Ag was obtained from 132.5 grams of AgNO 3  ?

The actual yield of the reaction is given as 71.5 g Ag so, to determine the percent yield, we need to first calculate the theoretical yield. This is the amount of Ag that can be formed if all the starting material (in this case AgNO 3 ) converts into product according to the chemical equation.

So, we are going to calculate the moles of 132.5 g AgNO 3 and determine the moles and the mass of the silver based on their stoichiometric ratio:

\[{\rm{n}}\;{\rm{(AgN}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\;{\rm{ = }}\;{\rm{132}}{\rm{.5}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{169}}{\rm{.9}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.780}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {{\rm{Ag}}} \right)\;{\rm{ = }}\;{\rm{0}}{\rm{.780 }}\cancel{{{\rm{mol}}\;{\rm{AgN}}{{\rm{O}}_{\rm{3}}}}}\;{\rm{ \times }}\;\frac{{{\rm{2}}\;{\rm{mol}}\;{\rm{Ag}}}}{{{\rm{2}}\;\cancel{{{\rm{mol}}\;{\rm{AgN}}{{\rm{O}}_{\rm{3}}}}}}}\;{\rm{ = }}\;{\rm{0}}{\rm{.780}}\;{\rm{mol}}\]

The mass, which is also the theoretical yield of Ag is:

\[{\rm{m}}\;{\rm{(Ag)}}\;{\rm{ = }}\;{\rm{0}}{\rm{.780}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{107}}{\rm{.9}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{84}}{\rm{.2}}\;{\rm{g}}\]

\[{\rm{\% }}\;{\rm{Yield}}\;{\rm{ = }}\;\frac{{\rm{A}}}{{\rm{T}}}\;{\rm{ = }}\;\frac{{{\rm{71}}{\rm{.5}}\;{\rm{g}}}}{{{\rm{84}}{\rm{.2}}\;{\rm{g}}}}\; \times \;100\% \; = \;85\;\% \]

Industrially, nitric acid is produced from ammonia by the Ostwald process in a series of reactions:

4NH 3 ( g ) + 5O 2 ( g ) → 4NO( g ) + 6H 2 O( l )

2NO( g ) + O 2 ( g ) → 2NO 2 ( g )

2NO 2 ( g ) + H 2 O( l ) → HNO 3 ( aq ) + HNO 2 ( aq )

Considering that each reaction has an 85% percent yield, how many grams of NH 3 must be used to produce 25.0 kg of HNO 3 by the above procedure?

2.20 x 10 4 g

Because we are given the mass of the product and need to determine the mass of the starting material, the calculations are going to be in reverse order. So, first, we can calculate the moles of HNO 3 and using the mole ratio, find the moles of NO 2 which is the link between the 3 rd and 2 nd reactions.

Before using the mass of HNO 3 , convert it to grams because the molar mass is given in grams per mole:

\[{\rm{m}}\left( {{\rm{HN}}{{\rm{O}}_{\rm{3}}}} \right)\;{\rm{ = }}\;{\rm{25}}{\rm{.0}}\;\cancel{{{\rm{kg}}}}\;{\rm{ \times }}\;\frac{{{\rm{1000}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{kg}}}}}}\;{\rm{ = }}\;{\rm{2}}{\rm{.5}}\;{\rm{ \times }}\;{\rm{1}}{{\rm{0}}^{\rm{4}}}\;{\rm{g}}\]

\[{\rm{n}}\;{\rm{(HN}}{{\rm{O}}_{\rm{3}}}{\rm{)}}\;{\rm{ = }}\;{\rm{2}}{\rm{.50}}\;{\rm{ \times }}\;{10^4}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{63}}{\rm{.0}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{397}}\;{\rm{mol}}\]

\[{\rm{n}}\;\left( {{\rm{N}}{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{397 }}\cancel{{{\rm{mol}}\;{\rm{HN}}{{\rm{O}}_{\rm{3}}}}}\;{\rm{ \times }}\;\frac{{{\rm{2}}\;{\rm{mol}}\;{\rm{N}}{{\rm{O}}_{\rm{2}}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{HN}}{{\rm{O}}_{\rm{3}}}}}}}\;{\rm{ = }}\;{\rm{794}}\;{\rm{mol}}\]

Now, this would have been the conversion if it was a process with a 100% yield. However, because each step of this process has an 85% percent yield, we need to multiply each mole conversion by a factor of

\[\frac{{{\rm{100\% }}}}{{{\rm{85\% }}}}\;{\rm{or}}\;{\rm{simply}}\;\frac{{{\rm{100}}}}{{{\rm{85}}}}\]

So, the moles of NO 2 that produced 397 mol of HNO 3 would be:

\[{\rm{n}}\;\left( {{\rm{N}}{{\rm{O}}_{\rm{2}}}} \right)\;{\rm{ = }}\;{\rm{794}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{100}}}}{{{\rm{85}}}}\;{\rm{ = }}\;{\rm{934}}\;{\rm{mol}}\]

Now, we go to the second reaction and see how much NO was needed to produce 934 mol NO 2 considering that the yield of the reaction is again 85%.

\[{\rm{n}}\;\left( {{\rm{NO}}} \right)\;{\rm{ = }}\;{\rm{934 }}\cancel{{{\rm{mol}}\;{\rm{N}}{{\rm{O}}_{\rm{2}}}}}\;{\rm{ \times }}\;\frac{{{\rm{2}}\;{\rm{mol}}\;{\rm{NO}}}}{{{\rm{2}}\;\cancel{{{\rm{mol}}\;{\rm{N}}{{\rm{O}}_{\rm{2}}}}}}}\; \times \;\frac{{100}}{{85}}\;{\rm{ = }}\;{\rm{1098}}\;{\rm{mol}}\]

Next, we do the same for the first reaction and determine how much NH 3 was needed to produce 1098 mol NO considering that the yield of the reaction is again 85%.

\[{\rm{n}}\;\left( {{\rm{N}}{{\rm{H}}_{\rm{3}}}} \right)\;{\rm{ = }}\;{\rm{1098 }}\cancel{{{\rm{mol}}\;{\rm{NO}}}}\;{\rm{ \times }}\;\frac{{{\rm{4}}\;{\rm{mol}}\;{\rm{N}}{{\rm{H}}_{\rm{3}}}}}{{{\rm{4}}\;\cancel{{{\rm{mol}}\;{\rm{NO}}}}}}\;{\rm{ \times }}\;\frac{{{\rm{100}}}}{{{\rm{85}}}}\;{\rm{ = }}\;{\rm{1293}}\;{\rm{mol}}\]

In the last step, we convert the moles to the mass of ammonia:

\[{\rm{m}}\;{\rm{(N}}{{\rm{H}}_{\rm{3}}}{\rm{)}}\;{\rm{ = }}\;{\rm{1293}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{17}}{\rm{.0}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{21,981}}\;{\rm{g}}\]

Rounding off to three significant figures, we get:

Aspirin (acetylsalicylic acid) is widely used to treat pain, fever, and inflammation. It is produced from the reaction of salicylic acid with acetic anhydride. The chemical equation for aspirin synthesis is shown below:

stoichiometry problems 2

In one container, 10.00 kg of salicylic acid is mixed with 10.00 kg of acetic anhydride.

a)  Which reactant is limiting? Which is in excess? b)  What mass of excess reactant is left over? c)  What mass of aspirin is formed assuming 100% yield (Theoretical yield)? d)  What mass of aspirin is formed if the reaction yield is 70.0% ? e)  If the actual yield of aspirin is 11.2 kg, what is the percent yield? f)  How many kg of salicylic acid is needed to produce 20.0 kg of aspirin if the reaction yield is 85.0% ?

Salicylic acid is the limiting reagent

2.608 x 10 3  g Acetic anhydride

1.305 x 10 4  g Aspirin

9.14 x 10 3  g Aspirin

a)  Which reactant is limiting? Which is in excess?

The limiting reactant is the one producing less product, so we need to calculate the moles of 00 kg salicylic acid and 10.00 kg acetic anhydride and see which one produces less aspirin. Because the mole ratio of all the reactants and products is 1:1, whichever has a smaller number of moles, it is the limiting reactant.

Before using the masses, convert them to grams because the molar mass is given in grams per mole:

\[{\rm{m}}\left( {{\rm{salicylic acid}}} \right)\;{\rm{ = }}\;{\rm{10}}{\rm{.00}}\;\cancel{{{\rm{kg}}}}\;{\rm{ \times }}\;\frac{{{\rm{1000}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{kg}}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.000}}\;{\rm{ \times }}\;{\rm{1}}{{\rm{0}}^{\rm{4}}}\;{\rm{g}}\]

\[{\rm{m}}\left( {{\rm{acetic anhydride}}} \right)\;{\rm{ = }}\;{\rm{10}}{\rm{.00}}\;\cancel{{{\rm{kg}}}}\;{\rm{ \times }}\;\frac{{{\rm{1000}}\;{\rm{g}}}}{{{\rm{1}}\;\cancel{{{\rm{kg}}}}}}\;{\rm{ = }}\;{\rm{1}}{\rm{.000}}\;{\rm{ \times }}\;{\rm{1}}{{\rm{0}}^{\rm{4}}}\;{\rm{g}}\]

\[{\rm{n}}\;{\rm{(salicylic acid)}}\;{\rm{ = }}\;{\rm{1}}{\rm{.000}}\;{\rm{ \times }}\;{\rm{1}}{{\rm{0}}^{\rm{4}}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{138}}{\rm{.1}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{72}}{\rm{.4}}\;{\rm{mol}}\]

\[{\rm{n}}\;{\rm{(acetic anhydride)}}\;{\rm{ = }}\;{\rm{1}}{\rm{.000}}\;{\rm{ \times }}\;{\rm{1}}{{\rm{0}}^{\rm{4}}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{102}}{\rm{.1}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{97}}{\rm{.9}}\;{\rm{mol}}\]

Salicylic acid is present in a smaller quantity, and because of the 1:1 molar ratio of all the reactants and products, it is going to produce less aspirin, and therefore, it is the limiting reactant.

b) What mass of excess reactant is left over?

We know that salicylic acid is the limiting reactant, so the calculations are going to be based on its moles (72.4 mol). Using the mole ratio, we can calculate how much acetic anhydride has reacted. The remaining mass of the acetic anhydride is calculated by subtracting this amount from the initial mass.

Again, because of the 1:1 molar ratio, there is going to be 72.4 mol acetic anhydride reacted:

\[{\rm{n}}\;\left( {{\rm{acetic anhydride}}} \right)\;{\rm{ = }}\;{\rm{72}}{\rm{.4 }}\cancel{{{\rm{mol}}\;{\rm{salicylic acid}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{\rm{acetic anhydride}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{salicylic acid}}}}}}\;{\rm{ = }}\;{\rm{72}}{\rm{.4}}\;{\rm{mol}}\]

This corresponds to:

\[{\rm{m}}\;{\rm{(acetic anhydride)}}\;{\rm{ = }}\;{\rm{72}}{\rm{.4}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{102}}{\rm{.1}}\;{\rm{g}}\;}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{7392}}\;{\rm{g}}\]

The remaining mass of acetic anhydride is:

10,000 – 7392 = 2608 g = 2.608 kg

c) What mass of aspirin is formed assuming 100% yield (Theoretical yield)?

72.4 mol aspirin will be formed because of the 1:1 molar ratio:

\[{\rm{n}}\;\left( {{\rm{aspirin}}} \right)\;{\rm{ = }}\;{\rm{72}}{\rm{.4 }}\cancel{{{\rm{mol}}\;{\rm{salicylic acid}}}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}\;{\rm{aspirin}}}}{{{\rm{1}}\;\cancel{{{\rm{mol}}\;{\rm{salicylic acid}}}}}}\;{\rm{ = }}\;{\rm{72}}{\rm{.4}}\;{\rm{mol}}\]

Using the molar mass of aspirin, we can calculate its mass for 100%-yield reaction:

\[{\rm{m}}\;{\rm{(aspirin)}}\;{\rm{ = }}\;{\rm{72}}{\rm{.4}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{180}}{\rm{.2}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{13,046}}\;{\rm{g}}\]

This corresponds to 13.05 kg when divided by 1000.

d) What mass of aspirin is formed if the reaction yield is 70.0%?

To find the mass of aspirin when the percent yield is 70.0%, we need to multiply the theoretical yield (13.05 kg) by 0.700:

m (aspirin) = 13.05 kg x 0.700 = 9.14 kg

e) If the actual yield of aspirin is 11.2 kg, what is the percent yield?

\[{\rm{\% }}\;{\rm{Yield}}\;{\rm{ = }}\;\frac{{\rm{A}}}{{\rm{T}}}\;{\rm{ = }}\;\frac{{{\rm{11}}{\rm{.2}}\;{\rm{kg}}}}{{{\rm{13}}{\rm{.05}}\;{\rm{kg}}}}\;{\rm{ \times }}\;{\rm{100\% }}\;{\rm{ = }}\;{\rm{85}}{\rm{.8}}\;{\rm{\% }}\]

f) How many kg of salicylic acid is needed to produce 20.0 kg of aspirin if the reaction yield is 85.0% ?

First, calculate the moles of 20.0 kg aspirin which is 2.00 x 10 4 g:

\[{\rm{n}}\;{\rm{(aspirin)}}\;{\rm{ = }}\;{\rm{2}}{\rm{.0}}\;{\rm{ \times }}\;{\rm{1}}{{\rm{0}}^{\rm{4}}}\;{\rm{g}}\;{\rm{ \times }}\;\frac{{{\rm{1}}\;{\rm{mol}}}}{{{\rm{180}}{\rm{.2}}\;{\rm{g}}}}\;{\rm{ = }}\;{\rm{111}}\;{\rm{mol}}\]

According to the mole ratio of the chemical equation, this is how much salicylic acid would be needed because of the 1:1 mole ratio.

However, because the reaction has an 85.0% percent yield, we need to multiply the moles by a factor of

\[{\rm{n}}\;{\rm{(salicylic acid)}}\;{\rm{ = }}\;{\rm{111}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{100}}}}{{{\rm{85}}}}\;{\rm{ = }}\;{\rm{131}}\;{\rm{mol}}\]

The mass of salicylic acid would be:

\[{\rm{m}}\;{\rm{(salicylic acid)}}\;{\rm{ = }}\;{\rm{131}}\;{\rm{mol}}\;{\rm{ \times }}\;\frac{{{\rm{138}}\;{\rm{g}}}}{{{\rm{1}}\;{\rm{mol}}}}\;{\rm{ = }}\;{\rm{18,078}}\;{\rm{g}}\]

This corresponds to 18.1 kg

3 thoughts on “Stoichiometry Practice Problems”

You forgot the subscript 3 for O in the molecular formula for acetic anhydride and the reaction is not balanced as written. For part F) it’s 18.1 kg and not1.81 kg as written in the final line of the solution.

Thanks for letting me know! Fixed.

You’re welcome!

Leave a Comment Cancel reply

web analytics

WassUp 1.9.4.5 timestamp: 2023-06-08 12:22:11AM UTC (07:22PM) If above timestamp is not current time, this page is cached.

stoichiometry problems 2

Solving Stoichiometry Problems

stoichiometry example problems

Core Concepts

In this tutorial, you will learn what is stoichiometry and the different types of problems involving it. You will go through several examples to practice and master the content!

Topics Covered in Other Articles

Balancing chemical equations.

Stoichiometry Definition

What is stoichiometry.

Stoichiometry is math having to do with chemical reactions. There are different types of calculations you can perform; stoichiometry with moles is the most common, but you can also do math with masses and even percentages. Read about the origins of stoichiometry here ! Learn what is mole in chemistry .

Stoichiometric Ratio

A stoichiometric ratio comes into play when talking about the relationships of elements or molecules in specific problems. This is the exact ratio between the coefficients of the reactants and products needed for a reaction to proceed normally. Let’s work through some problems you may see when learning about stoichiometry.

image illustrating stoichiometry and stoichiometric ratio

Stoichiometry Problems

A very common type of stoichiometric problem is balancing equations. This is an important chemistry skill to have because you have to have the correct ratio of reactants and products in order for a reaction to proceed; this is also an important foundation for organic chemistry. Although we have a tutorial on balancing equations , let’s look at one example.

Balance the following reaction:

\begin{gather*} {\_\_ C_{2}H_{2} + \_\_ O_{2} \rightarrow \_\_ CO_{2} + \_\_ H_{2}O} \end{gather*}

The main idea when balancing equations is that there should be the same number of each element on both sides of the reaction. You can balance the carbons and the hydrogens first, then move onto the oxygen. The balanced equation should look like this:

\begin{gather*} {2C_{2}H_{2} + 5O_{2} \rightarrow 4CO_{2} + 2H_{2}O} \end{gather*}

Example – Using Stoichiometric Ratio (Moles)

Use the equation below to solve the problem.

\begin{gather*} {C_{6}H_{12}O_{6} \rightarrow 2C_{2}H_{5}OH + 2CO_{2}} \end{gather*}

Example – Using Stoichiometric Ratio (Mass)

Let’s use the same equation as the problem above.

10\text{g}

Similar to the previous problem, by using the stoichiometric ratio of reactant to product, you can find the answer. Dimensional analysis is used to go from grams of C 2 H 5 OH to molar mass to mole (stoichiometric) ratio and back to grams.

\begin{gather*} {10\text{g}C_{2}H_{5}OH \cdot \frac{1\text{mol}C_{2}H_{5}OH}{46.068\text{g}C_{2}H_{5}OH} \cdot  \frac{1\text{mol}C_{6}H_{12}O_{6}}{2\text{mol}C_{2}H_{5}OH} \cdot \frac{1\text{mol}C_{6}H_{12}O_{6}}{180.156\text{g}C_{6}H_{12}O_{6}}  = 19.55\text{g}C_{6}H_{12}O_{6}} \end{gather*}

Stoichiometry Practice Problems

2.00\text{mol}

CaCl 2 and AgNO 3 react according to the following equation:

\begin{gather*} {CaCl_{2}(aq) + 2AgNO_{3}(aq) \rightarrow Ca\left(NO_{3}\right)_{2}(aq) + 2AgCl(s)} \end{gather*}

Hexane combusts according to the following reaction:

\begin{gather*} {2C_{6}H_{14}(g) + 19O_{2}(g) \rightarrow 12CO_{2}(g) + 14H_{2}O(g)} \end{gather*}

Stoichiometry Practice Problem Solutions

573\text{g}AgCl

Further Reading

Youtube

stoichiometry problems 2

Chemistry: Molarity and Solutions

How to Do Stoichiometry

Last Updated: December 2, 2022 References

This article was co-authored by Bess Ruff, MA . Bess Ruff is a Geography PhD student at Florida State University. She received her MA in Environmental Science and Management from the University of California, Santa Barbara in 2016. She has conducted survey work for marine spatial planning projects in the Caribbean and provided research support as a graduate fellow for the Sustainable Fisheries Group. There are 13 references cited in this article, which can be found at the bottom of the page. This article has been viewed 257,258 times.

In a chemical reaction, matter can neither be created nor destroyed according to the law of conservation of mass, so the products that come out of a reaction must equal the reactants that go into a reaction. This means the same amount of each atom that you put in must come back out. Stoichiometry is the measure of the elements within a reaction. [1] X Research source It involves calculations that take into account the masses of reactants and products in a given chemical reaction. Stoichiometry is one half math, one half chemistry, and revolves around the one simple principle above - the principle that matter is never lost or gained during a reaction. The first step in solving any chemistry problem is to balance the equation .

Balancing the Chemical Equation

Image titled Do Stoichiometry Step 1

Image titled Do Stoichiometry Step 2

Image titled Do Stoichiometry Step 3

Image titled Do Stoichiometry Step 4

Converting Between Grams and Moles

Image titled Do Stoichiometry Step 5

Image titled Do Stoichiometry Step 6

Image titled Do Stoichiometry Step 7

Image titled Do Stoichiometry Step 8

Image titled Do Stoichiometry Step 9

Converting Between Liters of Gas and Moles

Image titled Do Stoichiometry Step 10

Image titled Do Stoichiometry Step 11

Image titled Do Stoichiometry Step 12

Converting Between Liters of Liquid and Moles

Image titled Do Stoichiometry Step 13

Image titled Do Stoichiometry Step 14

Image titled Do Stoichiometry Step 15

Image titled Do Stoichiometry Step 16

Image titled Do Stoichiometry Step 17

Community Q&A

Community Answer

Video . By using this service, some information may be shared with YouTube.

You Might Also Like

Balance Chemical Equations

About This Article

Bess Ruff, MA

To do stoichiometry, start by balancing the chemical equation so that the number of atoms on each side of the equal sign are exactly the same. Next, convert the units of measurement into moles and use the mole ratio to calculate the moles of substance yielded by the chemical reaction. Then, convert moles of wanted substance to the desired units of measurement! For tips on converting different units of measurement into moles, read on! Did this summary help you? Yes No

Reader Success Stories

Girsh RS

Aug 21, 2017

Did this article help you?

Anonymous

Mar 22, 2018

Randy Orton

Randy Orton

May 11, 2016

Arnipalli Sateesh

Arnipalli Sateesh

Jan 4, 2017

John Malone

John Malone

Apr 13, 2016

Am I a Narcissist or an Empath Quiz

Featured Articles

Celebrate LGBT Pride Month As a Straight Person

Trending Articles

When Should You Double Down in Blackjack?

Watch Articles

Tie Dye Shoes

Don’t miss out! Sign up for

wikiHow’s newsletter

IMAGES

  1. Reaction Stoichiometry II

    stoichiometry problems 2

  2. Stoichiometry Problems (Part 2)

    stoichiometry problems 2

  3. Stoichiometry Problem 2

    stoichiometry problems 2

  4. Chapter 3 Summary: Stoichiometry Example Problem #2

    stoichiometry problems 2

  5. Stoichiometry

    stoichiometry problems 2

  6. Stoichiometry: Percent Yield, Practice Problem 2

    stoichiometry problems 2

VIDEO

  1. Determining Products Using Stoichiometry

  2. Three Step Conversions

  3. Stoichiometry Practice Problems involving Gases (PV=nRT)

  4. Intro to Chemistry 7.6: Gas Stoichiometry (1/2)

  5. Gas Stoichiometry

  6. Mass Relationships in Chemical Reactions

COMMENTS

  1. Stoichiometry (article)

    First things first: we need to balance the equation! In this case, we have 1 1 \ce {Na} Na atom and 3 3 \ce {H} H atoms on the reactant side and 2 2 \ce {Na} Na atoms and 2 2 \ce {H} H atoms on the product side.

  2. Ideal stoichiometry (practice)

    Given the following reaction: \ce {Zn + CuCl2 -> ZnCl2 + Cu} Zn+CuClX 2 ZnClX 2+Cu How many moles of \ce {ZnCl2} ZnClX 2 will be produced from 23.0 \text { g} 23.0 g of \ce {Zn} Zn, assuming \ce {CuCl2} CuClX 2 is available in excess? moles (round to three significant figures) Show Calculator Show Periodic Table Stuck?

  3. 5.2.1: Practice Problems- Reaction Stoichiometry

    Answer f Click here to see a video of the solution PROBLEM I 2 is produced by the reaction of 0.4235 mol of CuCl 2 according to the following equation: . How many molecules of I 2 are produced? What mass of I 2 is produced? Answer a Answer b PROBLEM Silver is often extracted from ores as K [Ag (CN) 2] and then recovered by the reaction

  4. Stoichiometry Practice Problems

    answer 4HCl + O 2 → 2H 2 O + 2Cl 2 b) answer Al (NO 3) 3 + 3NaOH → Al (OH) 3 + 3NaNO 3

  5. PDF Stoichiometry: Problem Sheet 2

    Chemistry: Stoichiometry - Problem Sheet 2 KEY 9) 2 24 2 2 23 2 2 2 2 4.63 x 10molecules I 1 mol I 6.02 x 10 moleculesI 1 mol Cl 1mol 71 g Cl Cl x 546 g Cl 10) 292 g Ag 1 mol Ag 108 g Ag 1 mol Cu 1 mol Ag 63.5 g Cu

  6. Stoichiometry questions (practice)

    Stoichiometry example problem 1 Stoichiometry Limiting reactant example problem 1 edited Specific gravity Stoichiometry questions Google Classroom One type of anaerobic respiration converts glucose ( C_6 H_ {12} O_6 C 6H 12O6) to ethanol ( C_2 H_5 OH C 2H 5OH) and carbon dioxide.

  7. 5.3: Stoichiometry Calculations

    Step 1: grams of A is converted to moles by multiplying by the inverse of the molar mass. Step 2: moles of A is converted to moles of B by multiplying by the molar ratio. Step 3: moles of B is converted to grams of B by the molar mass. To illustrate this procedure, consider the combustion of glucose.

  8. Stoichiometry

    Balance the following reaction: __ C 2 H 2 + __ O 2 → __ CO 2 + __ H 2 O The main idea when balancing equations is that there should be the same number of each element on both sides of the reaction. You can balance the carbons and the hydrogens first, then move onto the oxygen. The balanced equation should look like this:

  9. PDF Stoichiometrty

    Homework Set 1: 2C3H7OH + 9O2 --> 6CO2 + 8H2O How many moles of O2 are required to react with 58 moles of C3H7OH? How many moles of CO2 are required to react with 17 moles of O2? How many grams of CO2 would be required to react with 7.8 moles of H2O? How many grams of C3H7OH are needed to produce 0.45 moles of water?

  10. 5.2: Reaction Stoichiometry (Problems)

    Answer a Answer b Click here to see a video of the solution PROBLEM 5.2.4 What mass of silver oxide, Ag 2 O, is required to produce 25.0 g of silver sulfadiazine, AgC 10 H 9 N 4 SO 2, from the reaction of silver oxide and sulfadiazine? 2C 10H 10N 4SO 2 + Ag 2O → 2AgC 10H 9N 4SO 2 + H 2O Answer

  11. Stoichiometry and Balancing Reactions

    Stoichiometry is a section of chemistry that involves using relationships between reactants and/or products in a chemical reaction to determine desired quantitative data. In Greek, stoikhein means element and metron means measure, so stoichiometry literally translated means the measure of elements.

  12. Stoichiometry Problem Sets

    Problem Set ST7: Mass-to-Mass Stoichiometry 2 To use molar mass values and a balanced chemical equation to relate the mass of reactants to the mass of products. Includes 5 problems. Problem Set ST8: Mass-to-Mass Stoichiometry 3 To use molar mass values and a balanced chemical equation to relate the mass of reactants to the mass of products.

  13. 5.4: Gas Stoichiometry

    Solution. Step 1. First use stoichiometry to solve for the number of moles of CO 2 produced. (2molC 2H 6)( 4molCO 22molC 2H 6) = 4molCO 2. So 4 moles of Carbon Dioxide are produced if we react 2 moles of ethane gas. Step 2. Now we simply need to manipulate the ideal gas equation to solve for the variable of interest.

  14. Solving Stoichiometry Problems

    There are 4 major categories of stiochiometry problems. It is important to remember, though, that in every situation you need to start out with a balanced equation. 1. Mole-Mole Problems Problem: How many moles of HCl are needed to react with 0.87 moles of Al? Step 1: Balance The Equation & Calculate the Ratios

  15. Molarity and Solutions Problem Sets

    Problem Set MS13: Solution Stoichiometry 2. Apply stoichiometric principles to reactions between two aqueous-state reactants to relate the volumes and molarities of the reactants to the mass of product. The net ionic reaction is given. All problems are limiting reactant problems; there is significant scaffolding for each problem.

  16. 13.8: Solution Stoichiometry

    This volume makes intuitive sense for two reasons: (1) the number of moles of Pb(NO 3) 2 required is half of the number of moles of NaCl, based off of the stoichiometry in the balanced reaction (Equation 13.8.1 ); (2) the concentration of Pb(NO 3) 2 solution is 50% greater than the NaCl solution, so less volume is needed. Example 13.8.1

  17. 3.E: Stoichiometry (Exercises)

    A stoichiometric quantity of chlorine gas is added to an aqueous solution of NaBr to produce an aqueous solution of sodium chloride and liquid bromine. Write the chemical equation for this reaction. Then assume an 89% yield and calculate the mass of chlorine given the following: a. 9.36 × 10 24 formula units of NaCl.

  18. How to Do Stoichiometry (with Pictures)

    1 Balancing the Chemical Equation 2 Converting Between Grams and Moles 3 Converting Between Liters of Gas and Moles + Show 1 more... Other Sections Questions & Answers Video References Article Summary Co-authored by Bess Ruff, MA Last Updated: December 2, 2022 References

  19. Step by Step Stoichiometry Practice Problems

    Check your understanding and truly master stoichiometry with these practice problems! In this video, we go over how to convert grams of one compound to grams...

  20. Stoich Map Practice Problems TpT #2 SOLUTIONS.pdf

    # Steps 2 # Steps 3 # Steps 3Stoichiometry Map Problems #2 SOLUTIONS 1. moles of FeCl3 to grams of MgCl2 2FeCl3 + 3MgO Fe2O3+ 3MgCl2 How manygrams of MgCl 2are produced from the reaction of.84 moles of FeCl3? 2. grams of O2 to grams of SO2 2ZnS + 3O2 2ZnO + 2SO 2 How manygrams of SO2are produced from2.8 grams of oxygen gas? 3.